Richa EnviRonmEntal SERvicES PRivatE I imitEd

A-8/43 , Sector -16 , Rohini , Delhi - 110089 , India

http://www.richaservices.com +91 9711432204 sandeep@richaservcies.com

Design Calculation sheet along with assumptions

SBR (Sequencing Batch Reactor) – 450 KLd STP (Sewage Treatment Plants)

Important

In case of SBR only.

- 1. The hydraulic retention time is not a basis of design , although it appears in table of design parameters , It is likewise not a design criteria , **Because SBR is a batch process** , HRT (hydraulic retention time) has less meaning in comparison with continuous flow reactors
- 2. As HRT is not a design basis for SBR, that is why all other companies who say take x or y retention time, they will end up damaging the system.

Inlet & outlet parameters

S.no	Parameters	Inlet	Outlet	Remarks
1	BOD 5	300 mg/l	25 mg/l	In calculation we will take outlet BOD = 0
2	TSS	200 mg/l	30 mg/l	
3	NH3- N	25 mg/l	1 mg/l	
4	Ammonical nitrogen	150 mg/l	50 mg/l	
5	Total Phosphorus	10 mg/l	2 mg/l	
6	TKN	40 mg/l	5 mg/l	
7	COD	600 mg/l	150 mg/l	

Design Assumptions

S.no	Parameters	At Outlet	Remarks
1	F/M Ratio		
	(kgBOD applied/kgMLSS-d)	0.13	
2	MLSS	3500 mg/l	
3	Minimum Clarifier Depth	2.75 m	
4	Net Sludge yield		
	(kg MLSS/kg BOD5)	0.76	
5	Wastewater Temp	25 Degree C	
6	Min Solids Retention time	8 days	Theta C (mean cell residence

			time)
7	Reactor volume decanted each Day	60 %	
8	Net Elevation Above Sea Level	304 m	
9	DO mixed liquor concentration	2.5 mg/l	
10	Oxygen coefficients kg O2/kg BOD 5 kg O2/kg NH3- N	1.28 4.60	
11	Oxygen Transfer rate of Diffusers	1.25 kgO /kW-hr	
12	Number of cycles per day		
	Includes two square basins for		
	operational flexibility	4	

A. Reactor Volume

BOD 5 Removed (kg/d) = [(BOD inlet – BOD Outlet) mg/l] X Flow (L/day) X 10 ^-6 (kg/mg)

BOD 5 Removed (kg/d) = 135 kg / day

Required Aerobic Mass (kg) =

BOD 5 Removed (kg/d)

F/M Ratio (kgBOD applied/kgMLSS-d)

Required Aerobic Mass (kg) = 1038.46 kg MLSS

Reactor volume (low water level)
$$(m3) = \frac{MLSS mass (Kg) \times 10^{6} (mg/kg)}{MLSS Conc (mg/l) \times 10^{3} (L/m3)}$$

Reactor volume (low water level) (m3) = 297 m3

Since the Decant volume represents 60 % of the total volume

Total Reactor Volume m3 = 297 / (1-0.6)

= 743 m3 Reactor volume

B. Decant Volume

Total Decant volume = Total Reactor Volume m3 - Reactor volume (low water level) (m3)

= 743 - 297 = 446 m3 Decant volume

C. Detention Time

Max Detention time (hour) = Total Reactor volume / Flow

= 40 hours

Min Detention time (hour) = Decant Volume / Flow

= 23.786 hours

D. SBR Dimensions

Basin Area (m2) = Basin Volume (low water level) m3 / Min Depth

Basin Area (m2) = 108 m2

Basin Length (m) = 10.3 m = 11 m

Basin Depth = Total Reactor Volume / Basin Area

$$743 / (11*11) = 6.14 \, \mathrm{m}$$

E. Aeration Required

Nitrogeneous O2 Demand (kg O2 / d) = NH3 – N oxidized (kg/d) X kg O2/kg BOD 5NH3 – N oxidized (kg/d)= TKN removed (kg/d) - Synthesis N (kg/d)TKN Removed= (40 - 5) × 450 × 10^-3= 15.75 kg/dSynthethis N = 5% waste activated sludge of total daily sludge productionSludge Production (kg/d) = Net Sludge Yield (kgMLSS/kgBOD5) × BOD5 Removed (kg/d)

Sludge Production = 0.76 (kgMLSS/kgBOD5) × 135 (kg/d) = 102.6 kg/day

Synthesis N (kg/d) = 0.05 X 102.6 kg/d = 5.13 kg /day

NH3 - N oxidized (kg/d) = 15.75 kg/d - 5.13 kg/d = 10.62 kg / day

Nitrogeneous O2 Demand = 10.62 (kgNH3 –N oxidized/d) × 4.6 (kgO2/kgNH3 – N oxidized)			
= 48.852 kgO2/d			
Carbonaceous O2 Demand (kg	g O2/d) = BOD5 Mass (kg/d) × kg O2/kg BOD5		
Carbonaceous O2 Demand	= 5.13 (kg BOD5/d) × 1.28 kg O2/kg BOD5		
	= 6.5664 kg O2/d		
AOR (kg/d)	= Carbonaceous O2 Demand (kg/d) + Nitrogeneous O2 Demand (kg/d)		
AOR	= 6.5664 kgO2 /d + 48.852 kgO2 /d = 55.4184 kgO2 /d		

Where AOR = Actual oxygen requirement

Note : at Standard Temp & Pressure , 1 m3 air = 1.29 kg weight

Oxygen in air = 21 %

F. Blower Usage

14 hours per day	Based on 4 cycles per day (6 hour / cycle)
1 hour	Fill time
3.5 hour	React time
0.75 hour	Settle time
0.5 hour	Decant Time
0.25 hour	Idle time

Richa Environmental Services Private Limited				
Actively involved in manufacturing , installation , design				
Sewage Treatment Plants	Effluent Treatment	MBBR	Sequencing Batch	
STP	Plants (ETP)		Reactor	
MBR (Membrane Bio reactor)	Lamella Clarifier			

For feedback or any design related queries feel free to contact us.

Regards

Richa Environmental Services Private Limited

sandeep@richaservices.com , http://www.richaservices.com